
1

In this lecture, the instruction set architecture (ISA) of the RISC-V processor will be
introduced. We will only consider the base instruction set for the 32-bit integer
version of the ISA. Focus will be on the six different instruction types with emphasis
each instruction’s functionality and encoding of its machine code.

ISA of a processor does not dictate how the processor is implemented. It only
defines how to the processor is programmed. The actual hardware architecture will
be covered in the next lecture.

Lecture 6 Slide 1PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Lecture 6
Instruction Set Architecture

(RISC-V ISA)

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

2

RISC-V is by no means the first or the only Reduced Instruction Set Computer that
enjoys widespread adoption. The early RISC processor from Berkeley, the MIPS, was
used for over four decades in industry. The UK’s ARM processor (original stands for
Acorn Risc Machine) is the most manufactured CPU in history with an estimated 200
billions being shipped to date. However, RISC-V is the first widely accepted open-
source RISC processor. Opening the ISA to the public (royalty free) is a new business
model and has captured much attention in the past 5 years. Together with the free
toolchain for development and many open-source design freely available, RISC-V is
expected to pose real competition to x86 and ARM architecture to become at least
one of the dominant play in the sector.

RISC-V was developed by Krste Asanovic and Dave Patterson (and others) in
Berkeley in early 2010’s. The ISA was first published in 2011, and its future
development and ratification are under the control of RISC-V Foudation and RISC-V
International located in Switzerland.

According to Patterson and Hennessy’s textbook, the underpinning design principles
are shown on the slides.

Lecture 6 Slide 2PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V

u Developed by Krste Asanovic, David Patterson and
colleagues at UC Berkeley in 2010

 First widely accepted open-source computer architecture
 Underlying design principles:

1. Simplicity favours regularity
2. Make the common case fast
3. Smaller is faster
4. Good design demands good compromises

3

As shown in later slides, the instruction set has highly consistent format. The base
instruction set is known as RV32I (RISC-V 32-bit integer only) only has 40
instructions. The ISA has two sources and one destination operands. The format of
the instructions are divided into only six different types.

The second principle is the RISC-V only has commonly used instructions. Yet, it is
Turing Complete, meaning that it can be used to implement any computer
algorithms. This makes the RISC-V implementation both small and fast. Complex
operations are achieved by stringing together multiple instructions.

Lecture 6 Slide 3PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Design Principles

H&H p301-303

Principle 1: Simplicity favors regularity
• Consistent instruction format
• Same number of operands (two sources and one destination)
• Easier to encode and handle in hardware

Principle 2: Make the common case fast
• RISC-V includes only simple, commonly used instructions
• Hardware to decode and execute instructions can be simple, small, and fast
• More complex instructions (that are less common) performed using multiple simple

instructions
• RISC-V is a reduced instruction set computer (RISC), with a small number of simple

instructions
• Other architectures, such as Intel’s x86, are complex instruction set computers (CISC)

Principle 3: Smaller is Faster

4

To understand the RV32I ISA, we start with the add and subtract instructions as
shown in this slide. The diea is very simple – it shows that for add instructions, we
need two source operands (b and c) and one destimation (a).

Lecture 6 Slide 4PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Instructions: Addition & Subtraction

C Code
a = b + c;
a = b - c;

RISC-V assembly code
add a, b, c
sub a, b, c

• Add/sub: mnemonic indicates operation to perform
• b, c: source operands (on which the operation is
 performed)
• a: destination operand (to which the result is
 written)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

More complex code is handled by multiple RISC-V instructions.
C Code
a = b + c - d;

RISC-V assembly code
add t, b, c # t = b + c
sub a, t, d # a = t - d

H&H p303

5

Where do operands come from and where does the destination operand go?

There are three possibilities. The fastest and most often used operand is from or to
registers on the CPU chip itself. RISC-V RV32I has 32 32-bit registers. They form an
integral part of the CPU design and accessing them is easy and fast. 32 registers
means the instruction must use 3 x 5-bit = 15 bit of the 32-bit instruction to specify a
register-only (R-type) instruction.

The second possibility is from data memory. To access this, the instruction must
specify the data memory address, using a register as a pointer. In RISC-V, the
register content is often specified with an associated offset constant value as part of
the instruction.

The third possibility is from instruction memory, i.e. the operand is a constant within
the instruction itself. In ”RISC-V speak”, this is called an immediate.

Lecture 6 Slide 5PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Operands

• Operand location: physical location in computer
– Registers
– Memory
– Constants (also called immediates)

• RISC-V has 32 32-bit registers
• Registers are faster than memory
• RISC-V called “32-bit architecture” because it operates on

32-bit data

H&H p304

6

RISC-V RV32I has six types of instructions.

R-type (Register/register) instructions use only registers as source and
destiantions. This instruction type is mostly used for arithmetic and logic
operations involving the ALU.
I-type (Immediate) instructions has one of the two source operands specified
within the 32-bit instruction word as a 12-bit constant (or immediate). This
constant is regards as 12-bit signed 2’s complement number, which is always
sign extended to form a 32-bit operand.
S-type (Store) instructions are exclusively used for storing contents of a
register to data memory.
B-type (Branch) instructions are used to control program flow. It compares
two operands stored in registers and branch to a destination address relative
to the current Program Counter value.
J-type (Jump) instructions are used for subroutine calls.
U-type (Upper immediate) instructions are used to specify the upper 20 bits
immediate value of a register.

Lecture 6 Slide 6PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

32-bit RISC-V Instruction Types

7

RISC-V RV32 has 32 registers designated as x0 to x31. They are “general
purpose” registers in the sense that the ISA allows them to be used for any
purpose with the exception of x0, which ALWAYS contain the value 32’b0.
Writing to x0 does not change its content.

Having x1 to x31 for any general use can be confusing. Common good
practice is included in a guideline where specific registers are used for special
functions. For example x1 is used to store the return address (of a
subroutine) and therefore x1 is also called ra.

The table above shows the various aliases for all 32 registers. You are
recommend o use the given name of these registers to make the program
more readable. For example instead of using x0, you should always refer to it
as zero.

Lecture 6 Slide 7PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Registers

Name Register Number Usage
zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporaries
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
a0-1 x10-11 Function arguments / return values
a2-7 x12-17 Function arguments
s2-11 x18-27 Saved registers
t3-6 x28-31 Temporaries

H&H p305

8

Consider again the add instructions. ADD is a typical ALU instruction in the class of
arithematic and logic operations. It needs two source operands and one destination
operands to store the results. Shown here is the instruction: add s0, s1, s2
which uses three registers. Consider the encode of this instructions (slide 21).

The operation is specified with the opcode, funct3 and funct7 fields of the instructions.
opcode = 7’h38 (51), funct3 = 3’b0, funct7 = 7’b0.
rd: s0 = x8 = 5’b01000, rs1 = s1 = x9 = 5’b01001, rs2 = s2 = x18 = 5’b10010
If we fill in the fields with these values according the diagram here, we get:

Therefore this instruction has a machine code of 32’h01248433.

Similar, for: addi s0, s1, 6

opcode = 7’h13 (19), funct3 = 3’b0.
rd: s0 = x8 = 5’b01000, rs1 = s1 = x9 = 5’b01001 as before.
Imm12 = 12’h6.

Lecture 6 Slide 8PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V operand from Registers

Name Register Number Usage
s0/fp x8 Saved register / Frame pointer
s1 x9 Saved register
s2-11 x18-27 Saved registers

C Code

a = b + c;

a = b + 6;

RISC-V assembly code
s0 = a, s1 = b, s2 = c
add s0, s1, s2

s0 = a, s1 = b
addi s0, s1, 6

H&H p305

Therefore this instruction has a machine code of 32’h00648413.

8

9

32-bit operands in memory occupies 4 bytes. Some processor
uses one unique address for each 32-bit words. MIPS processor is
one such example. Everything instruction or data word has a
unique address – it is “word addressable” processor.

RISC-V uses byte-addressable to access memory, where EVERY
BYTE has a unique address.

Lecture 6 Slide 9PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V operands from memory

• Each 32-bit data word has a unique address

RISC-V uses byte-addressable memory (i.e. byte has a unique
address), so each 32-bit word uses 4 byte addresses

!"#A%&AA#D(()*+*

00000003

00000002

00000001

00000000

!"#$%&'&(&)*$+,

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

C D 1 9 A 6 5 B00000004

!"#A%,
!"#A%-
!"#A%.
!"#A%/

!"#A%0

!"#A%N234D#

H&H p307

10

Therefore, in RISC-V, every 32-bit occupies four unique addresses.
If the least significant byte has an address of base = 4, then the
most significant byte has an address of base + 3 = 7 as shown
above.

Since all RISC-V instructions are 32-bit, addresses of the
instruction memory are all aligned to an increment of 4.

Lecture 6 Slide 10PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Byte-addressable Memory

• Each data byte has a unique address
• Load/store words or single bytes: load byte (lb) and store

byte (sb)
• 32-bit word = 4 bytes, so word address increments by 4

!"#AB&AA#D(()*+*

0000000C

00000008

00000004

00000000

!"#$%&'&(&)*$+,

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

!"#AB,
!"#AB-
!"#AB.
!"#ABL

MN+DB&AA#D((

23M

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 !"#AB4

53M

!"#ABS789D#

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

11

This shows an example of how reading from data memory into
register s3 at data memory address 32’h8.

Lecture 6 Slide 11PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Reading Byte-Addressable Memory

• Example: Load a word of data at memory address 8 into s3.
• s3 holds the value 0x1EE2842 after load

RISC-V assembly code
lw s3, 8(zero) # read word at address 8 into s3

!"#AB&AA#D(()*+*

0000000C

00000008

00000004

00000000

!"#$%&'&(&)*$+,

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

!"#AB,
!"#AB-
!"#AB.
!"#ABL

MN+DB&AA#D((

23M

F E D C

B A 9 8

7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 !"#AB4

53M

!"#ABS789D#

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

12

This is an example of storing from register t7 to memory address
32’h10.

Lecture 6 Slide 12PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Writing Byte-Addressable Memory

• Example: store the value held in t7 into memory address 0x10 (16)
– if t7 holds the value 0xAABBCCDD, then after the sw completes,

word 4 (at address 0x10) in memory will contain that value

RISC-V assembly code

sw t7, 0x10(zero) # write t7 into address 16

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

13

An operand can also be a constant encoded within the instruction
itself. Here comes a problem: since RISC-V instructions are all
single 32-bit words, and an operand is also 32-bit wide, how can
an immediate constant operand be embedded in a 32-bit
instruction?
If the constant operand has a value of -2048 to -2047 (12’hFFF to
12’h8FF), the operand can be fully specified with a 12-bit binary
number in 2’s complement form. As it turns out, most constants
in computer programs are small. For example, to refer to an offset
index of an array, the index often falls within this range of
numbers.
In RV32I, I-type instructions have 12 bits reserved for such a
constant operand as shown in the slide here. The constant is
always sign externded before being used as an operand.

Lecture 6 Slide 13PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Operands from Constants

• 12-bit signed constants (immediates) using addi:

• Form 32-bit constant using sign extension

Any immediate that needs more than 12 bits cannot
use this method.

C Code
// int is a 32-bit signed word
int a = -372;
int b = a + 6;

RISC-V assembly code
s0 = a, s1 = b
addi s0, zero, -372
addi s1, s0, 6

H&H p306

12’hE8B

372 = 12’h174 = 12’b0001_0111_0100
-372 = 12’b1110_1000_1100 = 12’hE8B

14

Using a 12-bit immediate constant works most of the time.
However, there are times when a program requires to load a
register (say) with a 32-bit constant value.

In RV32I, this is achieved by splitting the constants into two parts
– the upper 20 bit, which can be loaded into a register, using the
instruction “load upper immediate” lui.
For example, the instruction: lui s0, 0xFEDC8 load into s0 the
value 32’hFEDC8000. This is then added to the bottom 12 bits of
the constant with the “add immediate” addi instruction:
 addi s0, s0 0x765.

This works perfectly if the MSB of the 12-bit immediate operand is
0. Unfortunately, if the MSB of the 12-bit constant (i.e. bit 11) is a
1, the constant is then sign extended. When added to the upper
20-bits previously loaded value in s0, the answer will be wrong
because the upper 20-bit will be modified. This is because in 2’s
complement representation, a 20-bit value of 20’hFFFFF is
equivalent to -1. Therefore the upper 20-bit, after the addi
instruction with be 1 lower than what it should be.

Lecture 6 Slide 14PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Operand with 32-bit Constants

• Use load upper immediate (lui) and addi
• lui: puts an immediate in the upper 20 bits of destination register

and 0’s in lower 12 bits

Remember that addi sign-extends its 12-bit immediate constant

C Code

int a = 0xFEDC8765;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC8
addi s0, s0, 0x765

H&H p306

15

Therefore, if bit 11 of the 32-bit constant is 1, we load the upper
20-bit with a constant that is 1 larger than the constant.

In this example, the constant is 32’hFEDC8EAB. Bit 11 is 1. Upper
20-bit is 20’hFEDC8, and lower 12-bit is 12’hEAB, which is -341 in
2’s complement representation after sign extension.

We first load s0 with 0xFEDC9 (1 larger than the upper value).
After the addi instruction, s0 will have the correct 32-bit constant
value.

Fortunately the assembly and compiler for RISC-V take care of this
automatically.

Lecture 6 Slide 15PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: 32-bit Constants (bit 11 is 1)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• If bit 11 of the constant is 1, increment upper 20 bits by 1 in lui

C Code
int a = 0xFEDC8EAB;

RISC-V assembly code
s0 = a
lui s0, 0xFEDC9 # s0 = 0xFEDC9000
addi s0, s0, -341 # s0 = 0xFEDC9000 + 0xFFFFFEAB

 # = 0xFEDC8EAB

Note: -341 = 0xEAB

16

RISC-V has many instructions missing deliberately to make is small and fast.
More complex operations are accomplished by multiple instructions or by an
instruction that result in the same operation.
For example there is no instruction to load a register with a constant value.
To load s0 with the small constant 6, we use the instruction:
 addi s0, zero, 6

To load s0 with a large constant 0xFEDC8EAB, we use the two instructions:
 lui s0, 0xFEDC9
 addi s0, s0, 0xEAB

This makes the assembly language program of RISC-V much harder to read
and understand. Fortunately, RISC-V assembler understand a number of
pseudo instructions. These instructions do not exist in the RISC-V ISA, but are
translated into equivalent RV32I instructions.

To load a register with a constant of any size constant (up to 32 bits), one can
use the “load immediate” li pseudoinstruction.

 li s0, 6
 li s0, 0xFEDC9
Slide 29 shows all the pseudo instructions that RISC-V assembler accepts.

Lecture 6 Slide 16PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Psuedoinstruction

• Load immediate 32-bit word is tedious.
• Pseudoinstruction – Assembler program translate “Load Immediate”

instruction “li” to two real RISC-V instructions: ”lui” and ”addi”
C Code
int a = 0xFEDC8EAB;

RISC-V real instructions
s0 = a
lui s0, 0xFEDC9
addi s0, s0, 0xEAB

Note: -341 = 0xEAB

RISC-V pseudoinstructions
s0 = a
li s0, 0xFEDC8EAB

• RISC-V has many pseudoinstructions (see later lectures)

17

Specifying where the operand comes from is called “addressing modes” of an
ISA. We have already discussed the two of the four addressing modes found
in RISC-V ISA: Register addressing and Immediate addressing. We will now
consider the remain two other addressing modes: Base addressing (with
offset) and Program Counter Relative addressing.

Lecture 6 Slide 17PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Addressing Modes

How do we address the operands?
• Register Only
• Immediate
• Base Addressing
• PC-Relative

Register Only
• Operands found in registers

– Example: add s0, t2, t3
– Example: sub t6, s1, 0

Immediate
• 12-bit signed immediate used as an operand

– Example: addi s4, t5, -73
– Example: ori t3, t7, 0xFF

H&H p340

18

Base addressing mode uses one of the registers content as the address into
memory. What stored in the register is not the actual operand, but it stores
the address of the operand. In C++, we call this a pointer - it points to the
place where the operand is stored.

In RISC-V, Base addressing is always used with an offset value which must be
a 12-bit 2’s complement immediate constant. The ”load” and “store”
instrutions use this mode of addressing.

Lecture 6 Slide 18PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Base + Offset Addressing

Base Addressing
• Loads and Stores
• Address of operand is:

base address + immediate
– Example: lw s4, 72(zero)

• address = 0 + 72

– Example: sw t2, -25(t1)
• address = t1 - 25

19

The final addressing mode is the Program Counter, or PC-relative addressing.
The operand is derived from the PC value by adding a 13-bit (not 12-bit) 2’s
complement offset. This type of addressing is ONLY used by the branch and
jump instructions.

For example, the above ”branch if not equal” instruction compares s8 and s9
contents. If they are NOT the same, then the PC counter is load with the
address of L1, which is 0x354.

How is the value 0x354 encoded in the instruction? The immediate constant
is calculated with the value of PC for the bne instruction, which ix 0xEB0. The
offset is calculated by 0xEB0 – 0x354 = 0xB5C. Therefore the stored
immediate value is therefore the value -2908.

Lecture 6 Slide 19PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: PC-relative Addressing

PC-Relative Addressing: branches and jal
 Example:

 Address Instruction
 0x354 L1: addi s1, s1, 1
 0x358 sub t0, t1, s7

 0xEB0 bne s8, s9, L1

The label is (0xEB0-0x354) = 0xB5C (2908) instructions before bne

20

The way that RISC-V encodes the relative offset of -2908 is complicated and
appears illogical. In fact the design decision for this instruction is very clever
and is aimed at making the hardware implementation as simple as possible.
Here are the design constraints that determine how the instruction is
encoded:
1. It uses the same fields for opcode (7 bits), funct3 (3 bits), rs1 and rs2 (5

bits) as other instructions. This means that 20 bits of the 32-bit
instructions are already used. So there are 12 bits left for encoding the
offset.

2. Since the branch destination is ALWAYS an instruction address, and that
RISC-V uses byte-addressable memory, the instructions for RV32I is
ALWAYS aligned to 4. In other words, there is no need to store the bottom
2 bits of the offset – they are always zero. However, there is a variant of
RISC-V ISA which targets microcontroller, where the among of program
memory is limited. The “Compressed” extension of RISC-V ISA includes
16-bit instructions (i.e. packing two instructions into a 32-bit word).
Therefore, the instruction address can be an increment of 2 instead of 4,
meaning that only bit 0 is always 0.

3. It is convenient in hardware that the bits used for encoding B-type
immediate values should be similar to that used for I-type and S-type
instructions. Therefore the locations of bits are the same for imm[4:1],
imm[10:5]. However, the branch immediate is 13 bits instead of 12 bits,
therefore imm[12] now takes the place of imm[11] in other case. They
are both sign bits.

4. Since imm[0] is always 0, there is no need to store it. Instead imm[11] is

Lecture 6 Slide 20PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V: Instruction coding for Branch offset

Relative offset = -2908

x24, x25,

1. stored here!

20

21

This an the next few slides are summary of ALL the 40 instructions in RISC-V
RV32I ISA.

Here is the R-type instructions that perform arithmetic and logical operations
using three registers. They all share the opcode of 51 decimal (or 0x33). The
funct3 and funct7 fields defines the specific operation.

Lecture 6 Slide 21PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

R-type Instructions: 3 register instructions

22

This group includes two instruction types which both require TWO register
operands and one 12-bit immediate operands.

The I-type instructions specify either a load instruction or a ALU instructions.
Here we specify a destination register rd to store the result of an memory
read of the ALU operation, and a source register rs1 to specify an operand for
the ALU operation or the address of the data to fetch.
Two opcodes are used for I-type instructions: 3 for load instructions and 19
for ALU immediate instruction. Note that some I-type instructions (shift
instructions) do not use sign-extension to the immediate values.

The S-type instructions does not require a destination register because the
destination is data memory. However they require two source registers, one
contain the value to write to memory, and a second has the base address of
the destination. The 12-bit immediate offset is split into two parts, using the
funct7 field of instr[31:25] and the rd field of instr[11:7], combined to form
imm[11:0].

Lecture 6 Slide 22PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

I & S-type Instructions: All involve imm constants

23

We have discussed the encoding of branch instructions in details in slide 19
& 20. Note that the opcode for B-type instructions is 99 or 0x63. funct3
defines the conditions under which branch takes place.

When implementing B-type instruction in hardware, one could use the ALU
to perform the comparison, or create special branch unit which provides
performs ONLY the comparison and no other operations and generates all the
required conditions. The second option makes the design cleaner.

Lecture 6 Slide 23PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

B-type Instructions: PC-relative Branches

H&H p311

24

Finally there are four special instructions that are not in the other category.
We have already discussed the lui instruction previously.

The U-type instructions are used to manipulate the upper 20-bit of a register
to handle 32-bit immediate constants.

The J-type instructions are for function or subroutine calls. They will be
discussed in a later lecture.

Lecture 6 Slide 24PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

U & I -type Instructions: Upper & Jump/Link

• We will discuss auipc, jalr and jal instructions in another lecture

25

The next few slides provide a catalogue of all the RISC-V RV32I instructions in
various groups.

All these instructions involve arithmetic operation.

Lecture 6 Slide 25PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Arithmetic instructions

26

These instructions perform logical operations.

Lecture 6 Slide 26PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Logic instructions

27

These instructions perform data memory read and write operations using
pointer address in register and an immediate offset.

Lecture 6 Slide 27PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Load/Store instructions

28

These are the branch and jump instructions involving offset to the Program
Counter.

Lecture 6 Slide 28PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Branch & Jump instructions

29

These are all the pseudo instructions accepted by the RISC-V assembler but
are not really RISC-V instructions in the ISA. They are translated by the RISC-
V assembler to one or more RISC-V instructions to make the program more
readable.

Lecture 6 Slide 29PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

RISC-V Psuedoinstructions

