Imperial College
London

Lecture 6
Instruction Set Architecture
(RISC-V ISA)

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 1

In this lecture, the instruction set architecture (ISA) of the RISC-V processor will be
introduced. We will only consider the base instruction set for the 32-bit integer
version of the ISA. Focus will be on the six different instruction types with emphasis
each instruction’s functionality and encoding of its machine code.

ISA of a processor does not dictate how the processor is implemented. It only
defines how to the processor is programmed. The actual hardware architecture will

be covered in the next lecture.

RISC-V

¢ Developed by Krste Asanovic, David Patterson and
colleagues at UC Berkeley in 2010

¢ First widely accepted open-source computer architecture
¢ Underlying design principles:

1. Simplicity favours regularity

2. Make the common case fast

3. Smaller is faster

4. Good design demands good compromises

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 2

RISC-V is by no means the first or the only Reduced Instruction Set Computer that
enjoys widespread adoption. The early RISC processor from Berkeley, the MIPS, was
used for over four decades in industry. The UK’s ARM processor (original stands for
Acorn Risc Machine) is the most manufactured CPU in history with an estimated 200
billions being shipped to date. However, RISC-V is the first widely accepted open-
source RISC processor. Opening the ISA to the public (royalty free) is a new business
model and has captured much attention in the past 5 years. Together with the free
toolchain for development and many open-source design freely available, RISC-V is
expected to pose real competition to x86 and ARM architecture to become at least
one of the dominant play in the sector.

RISC-V was developed by Krste Asanovic and Dave Patterson (and others) in
Berkeley in early 2010’s. The ISA was first published in 2011, and its future
development and ratification are under the control of RISC-V Foudation and RISC-V
International located in Switzerland.

According to Patterson and Hennessy’s textbook, the underpinning design principles
are shown on the slides.

Design Principles

Principle 1: Simplicity favors regularity

Consistent instruction format
Same number of operands (two sources and one destination)
Easier to encode and handle in hardware

Principle 2: Make the common case fast

RISC-V includes only simple, commonly used instructions
Hardware to decode and execute instructions can be simple, small, and fast

More complex instructions (that are less common) performed using multiple simple
instructions

RISC-V is a reduced instruction set computer (RISC), with a small number of simple
instructions

Other architectures, such as Intel’'s x86, are complex instruction set computers (CISC)

Principle 3: Smaller is Faster

H&H p301-303

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 3

As shown in later slides, the instruction set has highly consistent format. The base
instruction set is known as RV32l (RISC-V 32-bit integer only) only has 40
instructions. The ISA has two sources and one destination operands. The format of
the instructions are divided into only six different types.

The second principle is the RISC-V only has commonly used instructions. Yet, it is
Turing Complete, meaning that it can be used to implement any computer
algorithms. This makes the RISC-V implementation both small and fast. Complex
operations are achieved by stringing together multiple instructions.

Instructions: Addition & Subtraction

C Code RISC-V assembly code
a=>b + c; add a, b, c
a=>b - c; sub a, b, c

- Add/sub: mnemonic indicates operation to perform

* b, c: source operands (on which the operation is
performed)

¢ a: destination operand (to which the result is
written)

More complex code is handled by multiple RISC-V instructions.

C Code RISC-V assembly code
a=>b+c-d; add t, b, ¢ # t =Db + ¢
sub a, t, d # a=t - d
Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Hirris and David HMH),
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 4

To understand the RV32l ISA, we start with the add and subtract instructions as
shown in this slide. The diea is very simple — it shows that for add instructions, we
need two source operands (b and c) and one destimation (a).

RISC-V Operands

« Operand location: physical location in computer
— Registers
— Memory
— Constants (also called immediates)

* RISC-V has 32 32-bit registers
* Registers are faster than memory

* RISC-V called “32-bit architecture” because it operates on
32-bit data

H&H p304

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 5

Where do operands come from and where does the destination operand go?

There are three possibilities. The fastest and most often used operand is from or to
registers on the CPU chip itself. RISC-V RV32l has 32 32-bit registers. They form an
integral part of the CPU design and accessing them is easy and fast. 32 registers
means the instruction must use 3 x 5-bit = 15 bit of the 32-bit instruction to specify a
register-only (R-type) instruction.

The second possibility is from data memory. To access this, the instruction must
specify the data memory address, using a register as a pointer. In RISC-V, the
register content is often specified with an associated offset constant value as part of
the instruction.

The third possibility is from instruction memory, i.e. the operand is a constant within
the instruction itself. In ”RISC-V speak”, this is called an immediate.

32-bit RISC-V Instruction Types

Instruction Type | 31|30|29|28 27|26 /25/24/23/22/21|20/19/18 /17|16 /15/14/13/12/11|10/9 |8 |7 /6 |5/4 /3|2 /1|0

Register/register funct7 rs2 rsl funct3 rd opcode
Immediate (I-type) | < imm[11:2] - rsl funct3 rd opcode
Upper (U-type) imm[31:12] rd opcode
Store (S-type) imm[11:5] rs2 rsl funct3 imm[4:0] opcode
Branch (B-type) [12] imm[10:5] rs2 rsl funct3 imm[4:1] 1] opcode
Jump (J-type) [20] imm([10:1] [11] imm([19:12] rd opcode

L]

opcode (7 bit): partially specifies which of the 6 types of instruction formats

® funct7 + funct3 (10 bit): combined with opcode, these two fields describe what operation to perform

rs1 (5 bit): specifies register containing first operand

rs2 (5 bit): specifies second register operand

® rd (5 bit):: Destination register specifies register which will receive result of computation

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 6

RISC-V RV32I has six types of instructions.

R-type (Register/register) instructions use only registers as source and
destiantions. This instruction type is mostly used for arithmetic and logic
operations involving the ALU.

I-type (Immediate) instructions has one of the two source operands specified
within the 32-bit instruction word as a 12-bit constant (or immediate). This
constant is regards as 12-bit signed 2’s complement number, which is always
sign extended to form a 32-bit operand.

S-type (Store) instructions are exclusively used for storing contents of a
register to data memory.

B-type (Branch) instructions are used to control program flow. It compares

two operands stored in registers and branch to a destination address relative
to the current Program Counter value.

J-type (Jump) instructions are used for subroutine calls.

U-type (Upper immediate) instructions are used to specify the upper 20 bits
immediate value of a register.

RISC-V Registers

Name Register Number Usage

zero x0 Constant value 0
ra x1 Return address
sp x2 Stack pointer
gp x3 Global pointer
tp x4 Thread pointer
t0-2 x5-7 Temporaries
s0/fp |x8 Saved register / Frame pointer
sl x9 Saved register
a0-1 x10-11 Function arguments / return values
a2-17 x12-17 Function arguments
s2-11 |x18-27 Saved registers
t3-6 x28-31 Temporaries
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 7

RISC-V RV32 has 32 registers designated as x0 to x31. They are “general
purpose” registers in the sense that the ISA allows them to be used for any
purpose with the exception of x0, which ALWAYS contain the value 32’b0.
Writing to x0 does not change its content.

Having x1 to x31 for any general use can be confusing. Common good
practice is included in a guideline where specific registers are used for special
functions. For example x1 is used to store the return address (of a
subroutine) and therefore x1 is also called ra.

The table above shows the various aliases for all 32 registers. You are
recommend o use the given name of these registers to make the program
more readable. For example instead of using x0, you should always refer to it
as zero.

RISC-V operand from Registers

Name Register Number Usage
s0/fp x8 Saved register / Frame pointer
sl x9 Saved register
s2-11 x18-27 Saved registers
C Code RISC-V assembly code
s0 =a, s1 =Db, s2 =c¢
a=>b + c; add s0, sl1, s2
a=>b + 6; # s0O = a, s1 =Db
addi s0, sl1, ©
Instruction
31 (30|29 (28|27 |26|25|24|23|22(21(20 |19|18|17[16|15|14|13|12|11|10|9|8|7 |6|5[4|3|2[1]0
Formats
Register/register funct7 rs2 rs1 funct3 rd opcode
Immediate imm([11:0] rs1 funct3 rd opcode
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 8

Consider again the add instructions. ADD is a typical ALU instruction in the class of
arithematic and logic operations. It needs two source operands and one destination
operands to store the results. Shown here is the instruction: add sO0, sl, s2

which uses three registers. Consider the encode of this instructions (slide 21).

|funct3 |funct? | Type |Instruction | Description

0110011 (51) [000 |0000000 [R |add rd, rs, rs2 |add rd = rsl+ rs2

The operation is specified with the opcode, funct3 and funct7 fields of the instructions.
opcode = 7'h38 (51), funct3 = 3’b0, funct7 = 7'b0.

rd: sO =x8 =5’b01000, rsl =s1=x9=5b01001, rs2 =s2 =x18 =5'b10010

If we fill in the fields with these values according the diagram here, we get:

Instruction
o 31 /30|29 /28 27 26 25 /24 23|22 2120 19 18 17 16 15 14 13 12/ 11|/10|/9 8 7 6/5/4(3|2|1|0

Register/register funct? rs2 funct3 opcode

rs1 rd

Therefore this instruction has a machine code of 32°'h01248433.

Similar, for: addi s0, sl1, 6

|funct3 ‘funct7 |Typc |Instrucn'on

0010011 (19) (000 |- I |addi rd, rsl, imm |add immediate rd = rsl + SignExt(imm)
opcode = 7'h13 (19), funct3 = 3’b0.
rd: sO=x8=5'b01000, rs1 =s1=x9 =5'b01001 as before.
Imm,, = 12’h6.

Instruction
31 [3029|28(27 |26 25 24|23 /22|/21/20 19 /18 /17|16|15|/14|13 12/11 /10 9|8 7 |6/5/4 3/2|1|0
Formats

Immediate imm[11:0] s funct3 opcode

1 rd

Therefore this instruction has a machine code of 32°’'h00648413.

RISC-V operands from memory

» Each 32-bit data word has a unique address

Word Address Data Word Number

00000004 |C D|1 9|A 6|5 B| Word 4
00000003 |4 O|F 3|0 7|8 8| Word 3
00000002 |0 1|EE|2 8|4 2| Word 2
00000001 |F 2|F 1|A C|0 7| Word1

00000000 |A B|C D|E F|7 8| Word 0

-+
width = 4 bytes

RISC-V uses byte-addressable memory (i.e. byte has a unique
address), so each 32-bit word uses 4 byte addresses

H&H p307

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 9

32-bit operands in memory occupies 4 bytes. Some processor
uses one unique address for each 32-bit words. MIPS processor is
one such example. Everything instruction or data word has a
unique address — it is “word addressable” processor.

RISC-V uses byte-addressable to access memory, where EVERY
BYTE has a unique address.

RISC-V Byte-addressable Memory

e Each data byte has a unique address

e Load/store words or single bytes: load byte (Ib) and store
byte (sb)
e 32-bit word =4 bytes, so word address increments by 4

Byte Address Word Address‘ Data Wprd Number

13|12 11|10 | 00000010 |C D|1 9|A 6|5 B| Word 4
c 0000000C |4 O|F 3/0 7|8 8 Word 3
00000008 |0 1|EE|2 8|4 2| Word 2
7 00000004 |F 2|F 1|(A C|0O 7/ Word1

3 0 00000000 |A B|C D|E F|7 8| Word 0

MSB LSB B
width = 4 bytes

N o P H
B oo | U0

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Hims and David Harris (H&H),

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 10

Therefore, in RISC-V, every 32-bit occupies four unique addresses.
If the least significant byte has an address of base = 4, then the
most significant byte has an address of base + 3 =7 as shown
above.

Since all RISC-V instructions are 32-bit, addresses of the
instruction memory are all aligned to an increment of 4.

10

Reading Byte-Addressable Memory

e Example: Load a word of data at memory address 8 into s3.
e s3 holds the value Ox1EE2842 after load

RISC-V assembly code

1w s3, 8(zero) # read word at address 8 into s3

Byte Address ~ Word Address‘ Data Wprd Number

131211 |10 00000010 |C D|1 9|A 6|5 B| Word 4

E|D| C| 0000000C |4 0|F 310 7|8 8 Word3

A| 9 00000008 |0 1|E E|2 8|4 2| Word 2
7,65 00000004 |F 2|F 1|A C|0 7| Word 1
3] 2 1 0 00000000 |A B|CD|E F|7 8 Word0
MSB LSB

B T E—
Based on: “Digital Design and Computer Architecture (RISC-V Edition)” Wldth - 4 bytes
by Sarah Harris and David Harris (H&H),
=

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 11

This shows an example of how reading from data memory into
register s3 at data memory address 32’h8.

11

Writing Byte-Addressable Memory

e Example: store the value held in t7 into memory address 0x10 (16)

— if t7 holds the value 0XAABBCCDD, then after the sw completes,
word 4 (at address 0x10) in memory will contain that value

RISC-V assembly code

SW t7, 0x10(zero) # write t7 into address 16

Byte Address Word Address Data Word Number

13 /12 |11 10 00000010 AABBCCDD Word4
D c 0000000C |40 F 307 8 8 Word3

F E
B A 9 00000008 |01 EE 2 8 42 Word2
76 |5 4| 00000004 F2F1AaCO0?7 Word1
3.2 1 0 00000000 |[ABCDETF 78 Word0
MsB LsB - i >
Based on: “Digital Design and Computer Architecture (RISC-V Edition)” WIdth = 4 bytes
by Sarah Hirris and David Harris (H&H),
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 12

This is an example of storing from register t7 to memory address
32’h10.

12

RISC-V: Operands from Constants

e 12-bit signed constants (immediates) using addi:

C Code RISC-V assembly code
// int 1s a 32-bit signed word # s0 =a, sl =D

int a = -372; addi s0, zero, -372
int b = a + 6; addi sl1, s0, 6

372 =12'h174 = 12’b0001_0111_0100
-372 = 12’b1110_1000_1100 = 12’hE8B

* Form 32-bit constant using sign extension
Instruction

31 [30(29(28|27|26(25|24(23(22|21|20 |19|18|17(16(15|14|13|12(11|10(9(8|7 (6|5|4|3|2(1(0
Formats

Immediate imm([11:0] 12’hE8B rs1 funct3 rd opcode

Any immediate that needs more than 12 bits cannot
use this method.

H&H p306

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 13

An operand can also be a constant encoded within the instruction
itself. Here comes a problem: since RISC-V instructions are all
single 32-bit words, and an operand is also 32-bit wide, how can
an immediate constant operand be embedded in a 32-bit
instruction?

If the constant operand has a value of -2048 to -2047 (12'hFFF to
12'h8FF), the operand can be fully specified with a 12-bit binary
number in 2’s complement form. As it turns out, most constants
in computer programs are small. For example, to refer to an offset
index of an array, the index often falls within this range of
numbers.

In RV32I, I-type instructions have 12 bits reserved for such a
constant operand as shown in the slide here. The constant is
always sign externded before being used as an operand.

13

RISC-V: Operand with 32-bit Constants

e Use load upper immediate (lui) and addi

* |ui: puts an immediate in the upper 20 bits of destination register
and O’s in lower 12 bits

C Code RISC-V assembly code
sO0 = a
int a = OxXFEDC8765; lui s0, OxXFEDC8

addi s0, s0, 0x765
Remember that addi sign-extends its 12-bit immediate constant

Instruction

31 ([30|29(28(27|26(25|24|23|22|21(20 (19(18|17(16|15|14|13|12|11|10(9|8|7 6(5(4|3|2(1]|0
Formats
Upper .
. imm[31:12] rd opcode
Immediate
H&H p306
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 14

Using a 12-bit immediate constant works most of the time.
However, there are times when a program requires to load a
register (say) with a 32-bit constant value.

In RV32I, this is achieved by splitting the constants into two parts
—the upper 20 bit, which can be loaded into a register, using the

instruction “load upper immediate” 1ui.

For example, the instruction: 1ui s0, 0xrEDC8 load into sO the
value 32’hFEDC8000. This is then added to the bottom 12 bits of
the constant with the “add immediate” addi instruction:

addi s0, s0 0x765.

This works perfectly if the MSB of the 12-bit immediate operand is
0. Unfortunately, if the MSB of the 12-bit constant (i.e. bit 11) is a
1, the constant is then sign extended. When added to the upper
20-bits previously loaded value in s0, the answer will be wrong
because the upper 20-bit will be modified. This is because in 2’s
complement representation, a 20-bit value of 20’hFFFFF is
equivalent to -1. Therefore the upper 20-bit, after the addi
instruction with be 1 lower than what it should be.

14

RISC-V: 32-bit Constants (bit 11 is 1)

e If bit 11 of the constant is 1, increment upper 20 bits by 1 in 1ui

C Code
int a = OxFEDC8EAB; Note: -341 = OXEAB

RISC-V assembly code

sO = a

lui s0, OxFEDC9 # s0 = 0xFEDC9000

addi s0, s0, -341 # s0 = OxFEDC9000 + OXFFFFFEAB

= OxFEDC8EAB

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 15

Therefore, if bit 11 of the 32-bit constant is 1, we load the upper
20-bit with a constant that is 1 larger than the constant.

In this example, the constant is 32’hFEDC8EAB. Bit 11 is 1. Upper
20-bit is 20'hFEDCS, and lower 12-bit is 12’hEAB, which is -341 in
2’s complement representation after sign extension.

We first load sO with OXFEDC9 (1 larger than the upper value).
After the addi instruction, sO will have the correct 32-bit constant
value.

Fortunately the assembly and compiler for RISC-V take care of this
automatically.

15

RISC-V: Psuedoinstruction

e Load immediate 32-bit word is tedious.
e Pseudoinstruction — Assembler program translate “Load Immediate”

instruction “li” to two real RISC-V instructions: ”lui” and "addi”
C Code
int a = OxFEDC8EAB; Note: -341 = OXEAB
RISC-V pseudoinstructions RISC-V real instructions
sO0 = a # s0 = a
11 s0, OxFEDCS8EAB lui s0, OxFEDC9

addi s0, s0, OxEAB

e RISC-V has many pseudoinstructions (see later lectures)

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 16

RISC-V has many instructions missing deliberately to make is small and fast.
More complex operations are accomplished by multiple instructions or by an
instruction that result in the same operation.

For example there is no instruction to load a register with a constant value.
To load sO with the small constant 6, we use the instruction:

addi s0, zero, 6

To load sO with a large constant OXFEDC8EAB, we use the two instructions:

lui s0, OxFEDC9
addi s0, s0, OxEAB

This makes the assembly language program of RISC-V much harder to read
and understand. Fortunately, RISC-V assembler understand a number of
pseudo instructions. These instructions do not exist in the RISC-V ISA, but are
translated into equivalent RV32l instructions.

To load a register with a constant of any size constant (up to 32 bits), one can
use the “load immediate” 11 pseudoinstruction.

1i sO0, ©
1i s0, OxFEDC9
Slide 29 shows all the pseudo instructions that RISC-V assembler accepts.

16

RISC-V: Addressing Modes

How do we address the operands?
* Register Only

Register Only

* Operands found in registers
— Example: add s0, t2, t3
— Example: sub t6, s1, 0

* Immediate
* Base Addressing
* PC-Relative

Immediate

* 12-bit signed immediate used as an operand
— Example: addi s4, t5, -73
— Example: ori t3, t7, OxFF

H&H p340

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 17

Specifying where the operand comes from is called “addressing modes” of an
ISA. We have already discussed the two of the four addressing modes found
in RISC-V ISA: Register addressing and Immediate addressing. We will now
consider the remain two other addressing modes: Base addressing (with
offset) and Program Counter Relative addressing.

17

RISC-V: Base + Offset Addressing

Base Addressing
* Loads and Stores
* Address of operand is:

base address + immediate

— Example: lw s4, 72(zero)
* address= 0+72

— Example: sw t2, -25(t1)
* address= t1-25

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers

Lecture 6 Slide 18

Base addressing mode uses one of the registers content as the address into
memory. What stored in the register is not the actual operand, but it stores
the address of the operand. In C++, we call this a pointer - it points to the

place where the operand is stored.

In RISC-V, Base addressing is always used with an offset value which must be

a 12-bit 2’s complement immediate constant. The “load” and “store”

instrutions use this mode of addressing.

18

RISC-V: PC-relative Addressing

PC-Relative Addressing: branches and jal

Example:
Address Instruction
0x354 L1: addisl, s1,1
0x358 sub tO, t1, s7
OxEBO bne s8, s9, L1

The label is (OXEBO-0x354) = 0xB5C (2908) instructions before bne

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 19

The final addressing mode is the Program Counter, or PC-relative addressing.
The operand is derived from the PC value by adding a 13-bit (not 12-bit) 2’s
complement offset. This type of addressing is ONLY used by the branch and
jump instructions.

For example, the above "branch if not equal” instruction compares s8 and s9
contents. If they are NOT the same, then the PC counter is load with the
address of L1, which is 0x354.

How is the value 0x354 encoded in the instruction? The immediate constant
is calculated with the value of PC for the bne instruction, which ix OXEBO. The
offset is calculated by OXxEBO — 0x354 = 0xB5C. Therefore the stored
immediate value is therefore the value -2908.

19

RISC-V: Instruction coding for Branch offset

Assembly Relative offset = -2908
immyo=-2908 1 01 00 1010 01004
beq s8, s9, L1 bitnumber 12 111098 7654 3210
(beq x24, x25, Ll)

Instruction
Formats

31 |30[29(28|27|26|25|24(23(22|21|20 |19(18(17|16|15|14|13(12/11|10/9|8|7 6|/5|4(3(2(1|0

Branch [12] imm[10:5] rs2 rs1 funct3 imm[4:1) [11] opcode

Field Values

immqz 105 rs2 rs1 funct3 immg44 Op
1100101 | 24 { 25 } 1 { 00100 ’ 99 }
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

Machine Code

immizi0s rs2 rs1 funct3 immgs11 oOp

1100 101 V11000'11001] 001] 0010 0 ‘110 0011‘ (0XCB8C9263)
7bits 5bits 5bits 3bits 5 bits 7 bits

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 20

The way that RISC-V encodes the relative offset of -2908 is complicated and
appears illogical. In fact the design decision for this instruction is very clever
and is aimed at making the hardware implementation as simple as possible.

Here are the design constraints that determine how the instruction is
encoded:

1. It uses the same fields for opcode (7 bits), funct3 (3 bits), rs1 and rs2 (5
bits) as other instructions. This means that 20 bits of the 32-bit
instructions are already used. So there are 12 bits left for encoding the
offset.

2. Since the branch destination is ALWAYS an instruction address, and that
RISC-V uses byte-addressable memory, the instructions for RV32l is
ALWAYS aligned to 4. In other words, there is no need to store the bottom
2 bits of the offset — they are always zero. However, there is a variant of
RISC-V ISA which targets microcontroller, where the among of program
memory is limited. The “Compressed” extension of RISC-V ISA includes
16-bit instructions (i.e. packing two instructions into a 32-bit word).
Therefore, the instruction address can be an increment of 2 instead of 4,
meaning that only bit 0 is always O.

3. ltis convenient in hardware that the bits used for encoding B-type
immediate values should be similar to that used for I-type and S-type
instructions. Therefore the locations of bits are the same for imm[4:1],
imm[10:5]. However, the branch immediate is 13 bits instead of 12 bits,
therefore imm[12] now takes the place of imm[11] in other case. They
are both sign bits.

4. Since imm[0] is always 0, there is no need to store it. Instead imm[11] is

20

stored here!

20

R-type Instructions: 3 register instructions

Instruction

31 |30(29(28(27|26|25(24(23|22|21|20 (19|18|17|16(15(14|13|12|11|10|9(8|7 (6(5|4(3|2|1|0
Formats
Register/register funct7 rs2 rs1 funct3 rd opcode

funct3 |funct7 \Type llnstruction

0110011 (51) |000 |{0000000 |[R |add rd, rsl, rs2 |add rd = rsl+ rs?
0110011 (51) |000 0100000 |R sub rd, rsl, rs2 |sub rd = rsl - rs2
0110011 (51) (001 |0000000 R s11 rd, rsl, rs2 |shift left logical rd = rsl << rs2y
0110011 (51) (010 |0000000 R sit rd, rsl, rs2 |setless than rd = (rsl < rs2)
0110011 (51) |011 |0000000 |R |sltu rd, rsl, rs2 |set less than unsigned rd = (rsl < rs2)
0110011 (51) (100 0000000 |R [xor ~rd, rsl, rs2 |xor rd = rsl * rs2
0110011 (51) |101 |0000000 |R sl rd, rsl, rs2 |shift right logical rd = rsl >> rs2,
0110011 (51) |101 |0100000 |R sra rd, rsl, rs2 |shift right arithmetic rd = rsl >> rs2,
0110011 (51) [110 |0000000 |[R |or rd, rsl, rs2 |or rd = rsl | rs2
0110011 (51) |111 |0000000 |R |and rd, rsl, rs2 |and rd = rsl & rs2
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 21

This an the next few slides are summary of ALL the 40 instructions in RISC-V
RV321 ISA.

Here is the R-type instructions that perform arithmetic and logical operations
using three registers. They all share the opcode of 51 decimal (or 0x33). The
funct3 and funct7 fields defines the specific operation.

21

| & S-type Instructions: All involve imm constants

Instruction
31 (30|29(28(27|26(25|24|23|22|21(20 (19(18|17(16|15(14|13|12(11(10(9|8|7 6|/5/4(3|2(1|0
Formats
Immediate imm([11:0] rs1 funct3 rd opcode
Store imm([11:5] rs2 rs1 funct3 imm([4:0] opcode
|funct3 |funct7 | Type |Instruction | Description
0000011 (3) 000 — 1 1b rd, imm(rsl) |load bytc rd = SignExt([Address];.g)
0000011 (3) |001 |- I Th rd, imm(rsl) [load half rd = SignExt([Address]s.o)
0000011 (3) (010 |- I Tw rd, imm(rsl) |load word rd = [Address]s;.
0000011 (3) |100 |- I Tbu rd, imm(rsl) |load byte unsigned rd = ZeroExt([Address];.o)
0000011 (3) (101 |- I Thu rd, imm(rsl) |load half unsigned rd = ZeroExt([Address];s.o)
0010011 (19) (000 |- I addi rd, vrsl, imm |add immediate rd = rsl + SignExt(imm)
0010011 (19) (001 [0000000" |I s11i rd, rsl, uimm |shift left logical immediate rd = rsl << uimm
0010011 (19) (010 |- 1 slti rd, rsl, imm |set less than immediate rd = (rsl < SignExt(imm))
0010011 (19) (011 |- I sTtiu rd, rsl, imm |set less than imm. unsigned |[rd = (rsl < SignExt(imm))
0010011 (19) (100 |- 1 xori rd, rsl, imm |xor immediate rd = rsl ~ SignExt(imm)
0010011 (19) [101 [0000000" |1 srli rd, rsl, uimm |shift right logical immediate |rd = rsl >> uimm
0010011 (19) 101 {0100000" [T srai rd, rsl, uimm |shift right arithmetic imm. rd = rsl >> uimm
0010011 (19) (110 |- I ori rd, rsl, imm |or immediate rd = rsl | SignExt(imm)
0010011 (19) 111 - I andi rd, vrsl, imm |and immediate rd = rsl & SignExt(imm)
0100011 (35) [000 |- S sb rs2, imm(rsl) |store byte [Address];.q = rs2;.
0100011 (35) 001 |- S sh rs2, imm(rsl) |store half [Addresslys.g= rs2s.o
0100011 (35) |010 |- S SW rs2, imm(rsl) |store word [Address]s o= rs2
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 22

This group includes two instruction types which both require TWO register
operands and one 12-bit immediate operands.

e ucton 31 30|29 28|27 26|25 24|23 (22|21 /20 |19/18 17|16 /15|14 13|12 11 /10|90 |8|7 |6/5/4|3|2|1|0

Formats
Immediate imm([11:0] rs1 funct3 rd opcode
Store imm([11:5] rs2 rs1 funct3 imm([4:0] opcode

The I-type instructions specify either a load instruction or a ALU instructions.
Here we specify a destination register rd to store the result of an memory
read of the ALU operation, and a source register rs1 to specify an operand for
the ALU operation or the address of the data to fetch.

Two opcodes are used for |-type instructions: 3 for load instructions and 19
for ALU immediate instruction. Note that some I-type instructions (shift
instructions) do not use sign-extension to the immediate values.

The S-type instructions does not require a destination register because the
destination is data memory. However they require two source registers, one
contain the value to write to memory, and a second has the base address of
the destination. The 12-bit immediate offset is split into two parts, using the
funct? field of instr[31:25] and the rd field of instr[11:7], combined to form
imm[11:0].

22

B-type Instructions: PC-relative Branches

Instruction
31 (30(29(28|27(26|25|24|23|22|21(20 (19|18 (17|16|15|14|13|12(11(10|9|8|7 |6|(5(4|3(2|1|0
Formats

Branch [12] imm([10:5] rs2 rs1 funct3 imm([4:1] [11] opcode

‘ funct3 |funct7 |Type ‘ Instruction

1100011 (99) |000 |- B beq rsl, rs2, label branchif = if (rsl == rs2) PC = BTA
1100011 (99) 001 |- B bne rsl, rs2, label|branch if # if (rsl # rs2) PC = BTA
1100011 (99) 100 |- B bit rsl, rs2, label|branchif < if (rsl < rs2) PC = BTA
1100011 (99) 101 |- B bge rsl, rs2, label|branch if > if (rsl 2 rs2) PC = BTA
1100011 (99) (110 |- B bltu rsl, rs2, label|branch if < unsigned if (rsl < rs2) PC = BTA
1100011 (99) 111 |- _B bgeu rsil, rs2, 1abel'bmnch if > unsigned if (rsl 2 rs2) PC = BTA

IEEE

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 23

We have discussed the encoding of branch instructions in details in slide 19
& 20. Note that the opcode for B-type instructions is 99 or 0x63. funct3
defines the conditions under which branch takes place.

When implementing B-type instruction in hardware, one could use the ALU
to perform the comparison, or create special branch unit which provides
performs ONLY the comparison and no other operations and generates all the
required conditions. The second option makes the design cleaner.

23

U & | -type Instructions: Upper & Jump/Link

Instruction
31 |30|29|28|27|126|25|24|23(22|21|/20 |19(18|17|16|15|14|13|12|11(10|9|8(7 6/5(4(13|2(1(|0
Formats
Upper " /
e imm([31:12] rd opcode
Jump [20] imm([10:1] [11] imm[19:12] rd opcode
op n n p nst tion Description Op tion
0010111 (23) |- - U auipc rd, upimm add upper immediate to PC |rd = {upimm, 12'b0} + PC
0110111 (55) |- - U Tui rd, upimm load upper immediate rd = {upimm, 12°b0}
1100111 (103) |000 |- I jalr rd, rsl, inm |jump and link register PC=rsl +SignExt(imm), rd = PC+4
1101111 (111) |- -] jal rd, label jump and link PC = JTA, rd = PC+4

e We will discuss auipc, jalr and jal instructions in another lecture

PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 24

Finally there are four special instructions that are not in the other category.
We have already discussed the lui instruction previously.

The U-type instructions are used to manipulate the upper 20-bit of a register
to handle 32-bit immediate constants.

The J-type instructions are for function or subroutine calls. They will be
discussed in a later lecture.

24

RISC-V Arithmetic instructions

to PC

Mnemonic Instruction Description

ADD rd, rs1, rs2 Add rd « rst + rs2
SuUB rd, rs1, rs2 Subtract rd « rst - rs2
ADDI rd, rs1, imm12 Add immediate rd « rs1 + imm12
SLT rd, rs1, rs2 Set less than rderst <rs221:0

2 Set less than = e
SLTI rd, rs1, imm12 immediate rderst<immi2 21 :0
SLTU rd, rs1, rs2 Set less than unsigned rderst <rs221:0

- Set less than X .
SLTIV rd, rs1, imm12 immediate unsigned rderst<immi2 21 :0
LUI rd, imm20 Load upper immediate rd « inm20 << 12

Add immediat:

AUIP rd, inm20 el oot o rd « PC + inm20 << 12

PYKC 28 Oct 2025

EIE2 Instruction Architectures & Compilers

Lecture 6 Slide 25

The next few slides provide a catalogue of all the RISC-V RV32| instructions in

various groups.

All these instructions involve arithmetic operation.

25

RISC-V Logic instructions

AND rd, rs1, rs2 AND R rd « rs1 & rs2
OR rd, rs1, rs2 OR R rd«rs1 | rs2
XOR rd, rs1, rs2 XOR R rd « rs1 A rs2
ANDI rd, rs1, imm12 AND immediate | rd « rs1 & inm12
ORI rd, rs1, imm12 OR immediate | rd « rs1 | imm12
XORI rd, rs1, imm12 XORimmediate ! rd « rs1 A imm12
SLL rd, rs1, rs2 Shift left logical R rd « rs1 << rs2
SRL rd, rs1, rs2 Shift right logical R rd « rs1 > rs2
SRA rd, rs1, rs2 Shift right arithmetic R rd « rs1 > rs2
Shift left logical
SLLI rd, rs1, shamt Enmediate ! rd « rs1 << shamt
SRLI rd, rs1, shamt Shift right logical imm. | rd « rs1 >> shamt
Shift right arithmetic
SRAI rd, rs1, shamt immediate | rd « rs1 >> shamt

PYKC 28 Oct 2025

EIE2 Instruction Architectures & Compilers

Lecture 6 Slide 26

These instructions perform logical operations.

26

RISC-V Load/Store instructions

Mnemonic Instruction Description
LW rd, inm12(rs1) Load word rd « mem[rs1 + imm12]
LH rd, imm12(rs1) Load halfword rd « mem[rs1 + imm12]
LB rd, imm12(rs1) Load byte rd « mem[rs1 + imm12]
LW rd, imm12(rs1) Load word unsigned rd « mem[rs1 + imm12]
LHU rd, imm12(rs1) tc:::ig::;fword rd « mem[rs1 + imm12]
LBU rd, imm12(rs1) Load byte unsigned rd « mem[rs1 + imm12]
SW rs2, imm12(rs1) Store word rs2(31:0) - mem[rs1 + imm12]
SH rs2, inm12(rs1) Store halfword rs2(15:0) - mem[rs1 + imm12]
SB rs2, inm12(rs1) Store byte rs2(7:0) » em[rs1 + imm12)

PYKC 28 Oct 2025

EIE2 Instruction Architectures & Compilers

Lecture 6 Slide 27

These instructions perform data memory read and write operations using
pointer address in register and an immediate offset.

27

RISC-V Branch & Jump instructions

Mnemonic Instruction Type Description

sB if rs1 == rs2

i h |
BEQ rs1, rs2, imm12 Branch equa pc + pc + imm12

if rs1 != rs2

i h
BNE rs1, rs2, imm12 Branch not equal SB o« pe + immi2
Branch greater than or if rs1 >= rs2
i SB
BGE rs1, rs2, imm12 o0 o e At

Branch greater than or if rs1 >= rs2

BGEU rs1, rs2, imm12 oqual unsigned SB T
BLT rs1, rs2, imm12 Branch less than SB if rs1 < rs2)
pPC « pC + imm12
Branch less than if rs1 < rs2
BLTU rs1, rs2, imm12 . SB 1
' ' unsigned PC « pC + imm12 << 1
JAL rd, imm20 Jump and link u) rd « pc + 4
PC + pC + imm20
JALR rd, imm12(rs1) Jump and link register I rdepc+4
pc « rs1 + imm12
PYKC 28 Oct 2025 EIE2 Instruction Architectures & Compilers Lecture 6 Slide 28

These are the branch and jump instructions involving offset to the Program
Counter.

28

RISC-V Psuedoinstructions

Mnemonic Instruction Base instruction(s) Mnemonic Instruction Base instruction(s)
i Load immediate (near) i +
LI rd, imm12 i iate (near) ADDI rd, zero, imm12 BEGZ rs1, offset Branch if rs1=0 BEQ rs1, zero, offset
LI rd, imm Load immediate (far) LI rd, 1m[?1:12]. .
ADDI rd, rd, imm[11:0] BNEZ rs1, offset Branch if rs1#0 BNE rs1, zero, offset
AUIPC rd, sym[31:12]
r Load address (far] 2 5
LA rd, sym) ADDI rd, rd, sym[11:0] BGEZ rs1, offset Branchif rs120 BGE rs1, zero, offset
MV rd, rs Copy register ADDI rd, rs, 0
BLEZ rs1, offset Branchif rs1<0 BGE zero, rs1, offset
NOT rd, rs One's complement XORI rd, rs, -1
BGTZ rs1, offset Branchif rs1>0 BLT zero, rs1, offset
NEG rd, rs Two's complement SUB rd, zero, rs
A J offset Unconditional jump JAL zero, offset
BGT rs1, rs2, offset Branch if rs1 > rs2 BLT rs2, rs1, offset
. CALL offset12 Call subroutine (near) JALR ra, ra, offset12
BLE rs1, rs2, offset Branch if rs1 <rs2 BGE rs2, rs1, offset
i AUIPC ra, offset[31:12]
Branch if rs1 > rs2 CALL offset Call subroutine (far) ’ .
BGTU rs1, rs2, offset % ; BLTU rs2, rs1, offset JALR ra, ra, offset[11:0]
(unsigned)
Branch if rs1 < rs2 RET Return from subroutine JALR zero, 0(ra)
BLEU rs1, rs2, offset 2 BGEU rs2, rs1, offset
(unsigned)
NOP No operation ADDI zero, zero, O

PYKC 28 Oct 2025

EIE2 Instruction Architectures & Compilers

Lecture 6 Slide 29

These are all the pseudo instructions accepted by the RISC-V assembler but
are not really RISC-V instructions in the ISA. They are translated by the RISC-
V assembler to one or more RISC-V instructions to make the program more

readable.

29

